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I Data, Secular Trends, and Returns to Scale

I.I Main Sample, Variables Construction, and Summary Statistics

I.I.I Data cleaning, main variables, and summary statistics.

I use Compustat from 1977 to 2014. I drop all firmswhose Foreign Incorporation Code (FIC) is

not equal toUSA. Then, I linearly interpolate when there is onemissing between two available

data points SALE, COGS, XSGA, EMP, PPEGT, PPENT, XRD, XLR, XPR, XRENT, RECD,

DP for data quality. I exclude utilities (NAICS code 22) due to heavy price regulation, and

financial and insurance firms (NAICS code 52) because their balance sheets differ substantially

from those of non-financial firms.

To construct the firm-level total stock of capital, I use the perpetual inventory method

(PIM). In particular, with PIM, capital is defined as:

kit = (1− δ)kit−1 + xit, (1)

where xit − δkit−1 = PPENTit − PPENTit−1 is the net investment, and the initial capital

stock, ki0, is initialized using the first available entry of PPEGT.

For data quality, I interpret as mistakes zero or negative in SALE, k, EMP, or XSGA, and

I drop those observations; moreover, if SALE, k, EMP are missing, I drop these observations

too; however, if XSGA is missing, I set it to zero. Finally, if XRD, XLR, XPR, XRENT, RECD,

or DP are negative or missing, I treat them as zeros. To obtain a real measure of the main

variables, I deflate them with the GDP deflator; I deflate investment and capital stock by the

investment good deflator.1 Table I presents a few basic summary statistics for a few leading

variables used in the analysis.

I.I.II Selling costs.

I present the two main approaches used to measure firm-level expenditures on customer ac-

cumulation. As Compustat lacks a direct measure of this variable, I highlight the strengths

and limitations of each approach in turn.

Advertisement. The XAD variable in Compustat captures firms’ reported advertising ex-

1Deflators are taken from the NIPA tables.
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Table I: Summary Statistics (1977-2014)

Sales Cost of Employment Capital Stock Capital Stock Age
Goods Sold (Book Value) (PIM)

Mean 1,873,553 1,296,868 7,056 1,005,617 728,260 13
25th Percentile 22,553 13,896 115 5,756 3,552 5

Median 139,060 84,909 638 36,079 24,323 11
75th Percentile 751,619 483,007 3,500 241,352 169,204 19

No. Obs. 168,496 168,496 168,496 167,884 168,496 168,496

Note. Summary statistics of cleaned Compustat dataset between 1977 and 2014. All variables except for Age are
in thousands US$. Sales and Costs of Goods Sold are deflated with the GDP deflator using the base year 2012,
whereas both types of capital stocks are deflated using the investment deflator with the base year 2012.

penditures, offering insight into the costs incurred through various promotional activities.

While it serves as a useful proxy for selling costs, XAD has notable limitations that must be

considered when interpreting the data.

Typically, XAD includes spending on advertising through traditional media—such as tele-

vision, radio, print, and outdoor billboards—as well as promotional expenditures (Landes and

Rosenfield, 1994; Belo et al., 2014; Vitorino, 2014). These are direct, explicitly reported ex-

penses tied to marketing campaigns, making XAD a natural starting point for analyzing firm-

level selling costs.

However, XAD may not capture the full scope of marketing-related costs. For exam-

ple, expenditures on in-house advertising teams—such as salaries and benefits—are typically

recorded under general personnel costs rather than advertising. Moreover, reporting of XAD

varies across firms and industries, with some companies omitting this information altogether.

This heterogeneity results in missing or sparse data, which can limit both the precision and

representativeness of the measure over time and across sectors.

Adjusted SG&A. As an alternative to the advertising-based measure, an adjusted version

of Selling, General, and Administrative Expenses (XSGA) is used. This variable has attracted

considerable attention in recent studies, including Gourio and Rudanko (2014), Ptok et al.

(2018), Afrouzi et al. (2020), and Morlacco and Zeke (2021). Notably, Ptok et al. (2018) find

that XSGA is particularly effective in capturing firm-level sales force expenditures.

However, XSGA includes a range of expenses not directly related to selling activities—

such as bad debt expenses, pension and retirement costs, rent, and research and development

expenditures. For a breakdown of the components of XSGA, refer to Afrouzi et al. (2020). To
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partially address these limitations, I construct an adjusted measure as follows:

Sit = XSGAit − XRENTit − XPRit − RECDit − XRDit, (2)

where XSGA denotes total SG&A expenses, XRENT is rent expenditure, XPR captures pen-

sion and retirement costs, RECD reflects bad debt expenses, and XRD corresponds to R&D

spending. Whenever the adjusted value Sit is negative, it is set to zero.

I.I.III User Cost of Capital.

One approach used in this paper to estimate the production function is the cost share method,

which requires a measure of the user cost of capital. To construct this measure, I follow the

standard procedure in the literature (Hall and Jorgenson, 1967; De Loecker et al., 2020) and

use the following expression:

rt = it − Etπt+1 + δ, (3)

where it is the nominal interest rate, Etπt+1 is the expected inflation rate at time t, and δ is

the depreciation rate of capital. Following Barkai (2020), I use the annual Moody’s Seasoned

Aaa Corporate Bond Yield as a proxy for the nominal interest rate, and calculate expected

inflation using the annual growth rate of the Investment Nonresidential Price Deflator. The

depreciation rate is calibrated to δ = 0.1, consistent with the rest of the paper.2,3,4

I.I.IV Variable input in production.

Recent studies, following De Loecker et al. (2020), have adopted the cost of goods sold (COGS)

variable from Compustat as the preferred proxy for variable inputs in production. This choice

is motivated by the need for a bundled measure of variable input expenditures when com-

puting firm-level markups. However, despite its usefulness for this purpose, using COGS

necessitates estimating a gross output production function, which poses identification chal-

lenges (Gandhi et al., 2020). Moreover, this approach requires the strong assumption of perfect

substitutability between labor and materials.

2Moody’s Seasoned Aaa Corporate Bond Yield: https://fred.stlouisfed.org/series/AAA
3Investment Price Deflator: https://fred.stlouisfed.org/series/A008RD3Q086SBEA
4I estimate an AR(1) process on the annual growth rate of the Investment Nonresidential Price deflator and define
the contemporaneous expected inflation as Etπt+1 = µ+ ρπt.

3

https://fred.stlouisfed.org/series/AAA
https://fred.stlouisfed.org/series/A008RD3Q086SBEA


Given that the primary aim of this paper is to estimate returns to scale and output elasticities—

rather than markups—I adopt a direct measure of variable input that avoids these complica-

tions. Specifically, I use EMP, the number of employees at the firm level, as the benchmark

measure of variable input.

To compute cost shares consistent with this measure, I construct firm-level labor costs

as witℓit. For firms that report labor expenditures (XLR), I calculate the wage per worker as

wit = XLRit/EMPit. I then compute the within-sector median wage ŵst across all firms in

a given sector and use it to impute labor costs for firms that do not report XLR, using the

formula witℓit = ŵst · EMPit.

I.II Secular Trends

Figure I shows the evolution of the entry rate, reallocation rate, markups, and selling costs

relative to production costs from 1980 to 2014. Dashed light blue lines with triangles represent

the raw data, while solid dark blue lines with squares show the smoothed series using a 5-

year moving average. All variables are expressed as percentages. Entry and reallocation rates

are sourced directly from the BDS. Markups are cost-weighted averages from Compustat,

measured following De Loecker et al. (2020). Selling costs relative to production costs are

constructed as a simple average of the ratio of advertising expenditures to the cost of goods

sold, also using Compustat data.

The entry rate declined from 12% to 8%, a drop of 33%. The reallocation rate fell from

31% to 22%, representing a 29% decrease. Markups rose from 15% to 23%, an increase of 53%.

Finally, selling costs relative to production costs, measured as costs of goods sold, increased

from 5% to 8%, a rise of 60%.

Figure II shows the evolution of an alternative measure of selling costs relative to produc-

tion costs, based on adjusted SG&A rather than advertising expenditures. This measure also

displays a substantial increase, rising from 50% to 95%, which represents a 90% increase.
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Figure I: Secular Trends over Time
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1980 1985 1990 1995 2000 2005 2010 2015
Year

12

14

16

18

20

22

24

26

28

%

(c) Markups

1980 1985 1990 1995 2000 2005 2010 2015
Year

4

6

8

10

12

(d) Selling Costs over Production Costs

Note. Figure I presents the evolution of the entry rate, reallocation rate, markups, and selling costs relative to
production costs from 1980 to 2014. Dashed light blue lines with triangles represent the raw data, while solid dark
blue lines with squares show the smoothed series using a 5-year moving average. All variables are expressed
as percentages. Entry and reallocation rates are taken directly from the BDS. Markups and selling costs are
constructed from Compustat data, with the former aggregated using cost weights and the latter calculated as a
simple average.

I.III Returns to Scale

I.III.I Production Function Estimation

To estimate returns to scale, I follow De Loecker et al. (2020) and employ the control function

approach proposed by Ackerberg et al. (2015). To sidestep the measurement issues associ-

ated with materials in Compustat and the identification challenges inherent in gross output

production functions (Gandhi et al., 2020), I adopt the following structural value-added pro-

duction function as the preferred specification:

Qit = min
{
Kβk

it L
βℓ

it exp(zit + εit), β
mMit

}
, (4)
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Figure II: Alternative Selling Costs to Production Costs over Time
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(a) Selling Costs over Production Costs

Note. Figure II displays the alternative selling costs relative to production costs. The light blue line with triangles
depicts the data, while the dark blue line with squares illustrates the trend calculated as a 5-year moving average.
Selling costs over production costs have been calculated using the alternative measure of adjusted SG&A.

whereQit is output,Kit is capital, Lit is labor, zit is log-productivity, εit is the error term, and

Mit is materials. Despite the advantages of the structural value-added specification, Section

I.III.III of the Appendix shows that the results remain robust to alternative specifications of the

production function such a gross output and a translog specification. This structural value-

added production function yields the following first-order condition:

Qit = Kβk

it L
βℓ

it exp(zit + εit), (5)

This approach justifies regressing output Qit—rather than value-added—on capital and labor,

while omitting materials. Robustness checks, reported in Section I.III.III of the Appendix,

show that using value-added instead yields similar results. Therefore, under the specification

in equation (4), the estimation of the firm-level production function simplifies to:

qit = βkkit + βℓℓit + zit + εit, (6)

where qit = log(Qit), kit = log(Kit), and ℓit = log(Lit). The main challenge in estimating

the production function is the simultaneity bias arising from the unobserved, time-varying

firm-level productivity term, zit. Although equation (6) relates physical output to inputs, in

practice the available data only allow the estimation of a relationship between sales and input.

6



This leads to the following revenue-based production function:

pit + qit ≡ yit

= βkkit + βℓℓit + zit + pit + εit,

(7)

where pit denotes the log of the firm’s output price, yit is the log of sales, pkt is the common log

user cost of capital, and pℓt is the log input price of labor. Consequently, researchers must ad-

dress not only the simultaneity bias but also the omitted price bias (Klette and Griliches, 1996;

Bond et al., 2021) to accurately estimate the elasticities in equation (6). As emphasized by

De Ridder et al. (2022), omitted price bias can lead to downwardly biased production elastici-

ties, particularly when firms face persistent demand shocks under downward-sloping demand

curves or increasing returns to scale. For instance, with increasing returns to scale, positive

shocks lower marginal costs and prices, generating a negative correlation between prices and

inputs. Correcting for this bias is thus crucial to avoid systematically underestimating returns

to scale.

To address both biases in estimating equation (7), I follow the control function literature,

which relies on the insight that a firm’s labor demand can be expressed as ℓit = ℓ(kit, zit, dit).

Under standard regularity conditions, there exists a one-to-onemapping between productivity

and labor input, conditional on capital and demand shifters, allowing for control of simultane-

ity bias, since zit = ℓ−1(kit, ℓit, dit). The term dit captures factors related to output and input

markets that generate variation in labor demand across firms, conditional on productivity and

capital. Incorporating dit is crucial for allowing imperfect competition in product markets,

ensuring invertibility of the function ℓ(·), and addressing the omitted price bias. In particu-

lar, observable variables governing cost pass-through—such as market shares—can serve this

role (De Loecker et al., 2020), since firms with identical productivity may transmit input cost

shocks differently depending on their market position. This strategy enables the separation

of price measurement errors from the estimation of production function parameters.

In practice, the production function is estimated in two stages. In the first stage, output

is purged of measurement error and unanticipated productivity shocks by regressing it on a

second-order polynomial of capital and labor, ϕ(kit, ℓit), along with market shares:

yit = ϕ(kit, ℓit) + γdit + εit. (8)
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In the second stage, using purged output ϕ̂it, I construct a productivity measure indepen-

dent of both the measurement error εit or the price component, as captured by γdit, given

by:

zit(β
k, βℓ) = ϕ̂it − βkkit − βℓℓit. (9)

Finally, assuming an AR(1) process, shocks to productivity are given by:

ξ(βk, βℓ, ρ) = zit(β
k, βℓ)− ρzit−1(β

k, βℓ). (10)

Therefore, using the productivity shocks, a set of moment conditions can be constructed

to estimate the parameters of the production function, given by:

E(ξ(βk, βℓ, ρ)× zit) = 0Z×1, (11)

where Z ≥ 3 and, under the assumption that firms react to unanticipated productivity shocks

contemporaneously and that capital is predetermined, the set of admissible instruments is zit
∈ {kit, ℓit−1, kit−1, . . . }. Returns to scale are recovered as α = βk + βℓ. In Compustat, yit
is measured by log-sales, kit by log-capital, ℓit by the number of log-employees, and dit by

log-sales shares.

I.III.II Returns to Scale Estimates

Figure IIIa shows the evolution of average sales-weighted returns to scale across two-digit

NAICS industries, constructed as follows:

αt =
∑
s

ωstαst, (12)

where ωst denotes the sales share of sector s in year t, and αst is the sector-level estimate of

returns to scale.

In 1980, the average returns to scale is close to 1, suggesting firms operated under a con-

stant returns to scale technology.5 By 2014, the estimate rises by 5% to approximately 1.05,

indicating that firms operate an increasing returns to scale production technology.

5These results align with findings by Gao and Kehrig (2017), who report nearly constant returns to scale for the
1982–1987 period using U.S. Census data.
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The average returns to scale is a useful statistic but it does not fully capture the underlying

distributional changes in returns to scale. To study the dynamics of returns to scale across

sectors, I decompose the change in returns to scale as follows:

∆αt =
∑
s

ωst−1∆αst︸ ︷︷ ︸
∆within

+
∑
s

∆ωstαst−1︸ ︷︷ ︸
∆between

+
∑
s

∆ωst∆αst︸ ︷︷ ︸
∆cross term

. (13)

Thus, the change in average returns to scale can be exactly decomposed into three com-

ponents: (i) a within component, which captures the change in average returns to scale at the

sector level; (ii) a between component, which captures the change in average returns to scale

due to the reallocation of economic activity toward high returns to scale sectors; and (iii) a

cross-term component, which captures the change in average returns to scale due to the joint

effect of returns to scale and reallocation.

Figure IIIb illustrates the decomposition of average returns to scale, alongside two coun-

terfactual experiments: the∆within and the∆between. The∆cross-term experiment is omit-

ted as it holds little economic interest and remains close to zero throughout the period. The

analysis begins in 1980, with changes in each component from equation (13) cumulatively

added.

The first experiment (solid dark blue line with squares) isolates the ∆within component,

showing that it exceeds the average returns to scale. The second experiment (dotted light

blue line with circles) isolates the ∆reallocation component, revealing a decreasing profile.

These experiments indicate that the rise in average returns to scale is primarily driven by

changes within sectors, while any cross-sector reallocation of economic activity has had a

minor dampening effect on the increase.

Additionally, Section I.III.III uses firm-level estimates of returns to scale derived from a

translog production function to show that there appears to have been little reallocation within

sectors. This observation together with the finding that returns to scale have been rising

within all sectors supports treating the rise in returns to scale as a homogeneous technological

change affecting all firms—at least within the Compustat sample.
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Figure III: Returns to Scale over Time
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Note. Figure IIIa displays the evolution of the estimated returns to scale. The light blue line with triangles shows
the point estimates, while the dark blue line with squares presents a 7-year smoothed moving average. Figure
IIIb plots the counterfactual evolution implied by the decomposition in equation (13). The dashed light blue line
with triangles represents the average returns to scale. The solid dark blue line with squares shows the evolution
of average returns to scale driven solely by the∆within component, while the dotted light blue line with circles
reflects the evolution driven only by the ∆between component. Sector-level estimates are winsorized at the 1%
level. Output elasticities are time-varying and calculated using rolling windows from 1980 to 2014.

I.III.III Robustness

Robustness 1 — Cost shares. The cost shares approach relies on the firm’s first-order conditions,

assuming constant returns to scale and all inputs being variable, to calculate output elasticities

from cost shares as:

θℓ = median
{

witℓit
witℓit + rtkit

}
, and θk = 1− θℓ; (14)

where witℓit is the wage bill, and rtkit is the rental cost of capital. Following Syverson (2004),

returns to scale can be then measured through the following regression:

qit = α
[
θkkit + θℓℓit

]
+ δX ′

it + zit (15)

with all variables in logs, θk and θℓ are given by (14), and X it is a vector of controls, such as

sector-level fixed effects. Thus, while each cost share determines the output elasticities, the

returns to scale are captured by α, recovered via simple OLS.

Robustness 2 — Intangible capital. To assess the robustness of the rise in returns to scale

to the presence of intangible capital in production I estimate a new production function that
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incorporates intangible capital instead of equation (6):

yit = βkkit + βxxit + βℓℓit + zit + εit, (16)

where xit represents the intangible capital in production. The returns to scale implied by the

augmented production technology in equation (16) are given by α = βk+βx+βℓ, which can

be estimated as in Section I.III.I.

To measure intangible capital I follow Chiavari and Goraya (2021) and assume that in-

tangible capital is made of balance sheet and knowledge intangible capital. The balance sheet

intangible capital is given by:

χbalance sheet
it = INTANit + AMit − GDWLit, (17)

where INTAN represents the net balance sheet intangible capital, AM is the amortization of

the balance sheet intangible capital, and GDWL is goodwill. Knowledge capital is defined as:

χknowledge
it = (1− 0.30)χknowledge

it−1 + XRDit, (18)

where the depreciation rate is set to 30%, similar to the estimates by Ewens et al. (2019). Here,

XRD represents the firm-level expenditure on research and development, and χknowledge
i0 is

set to zero. Finally, the total firm-level intangible capital is given by χit = χbalance sheet
it +

χknowledge
it . To approximate log-intangible capital xit = log(χit), I use the inverse hyperbolic

sine transformation: log
(
χit+

√
χit + 1

)
. This transformation retains observationswithχit =

0.

Robustness 3 — Translog production function. Here, I examine the robustness of the rise

in returns to scale by considering an alternative specification to equation (6) using a translog

production function:

qit = θk1kit + θℓ1ℓit + θk2k
2
it + θℓ2ℓ

2
it + θkℓ3 kitℓit + zit + εit. (19)

To estimate the translog production function, I follow the methodology outlined in Sec-

tion I.III.I. Since the translog production function involves estimating more parameters and

provides firm- and time-specific estimates, I estimate it only once in the data to maximize sta-
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tistical power.6 I then compute the median estimate within each industry and year, ensuring

that the estimates are not overly influenced by outliers, given by:

βk = median
{
θk1 + 2θk2kit + θkℓ3 ℓit

}
and βℓ = median

{
θℓ1 + 2θℓ2ℓit + θkℓ3 kit

}
. (20)

The returns to scale implied by the production technology in equation (19) for each sector

and time are given by α = βk + βℓ.

Robustness 4, 5, 6 — Alternative Variable Inputs. Recent studies have carefully examined

which Compustat expenditure items should be included as measures of variable input in pro-

duction, recognizing that accounting classifications do not necessarily align with economic

variability. It is therefore important to assess how different input definitions affect estimates

of returns to scale over time. In this study, I show that returns to scale rise consistently over

time, regardless of the specific input measure used. To demonstrate this, I consider three

specifications: (i) treating cost of goods sold as the sole variable input, following De Loecker

et al. (2020); (ii) treating the sum of cost of goods sold and selling, general, and administrative

expenses as variable input, following Traina (2018); and (iii) treating cost of goods sold as the

primary input while allowing selling, general, and administrative expenses as an additional

input.

In the first two cases, as opposed to equation (6), the production function takes the fol-

lowing form:

qit = βkkit + βvvit + zit + εit, (21)

where vit is the variable input in production. The variable input in production in these two

cases is measured as:

Case I: vit = COGSit and Case II: vit = COGSit + XSGAit; (22)

hence, the first case assumes that the variable input in production is the cost of goods sold,

as in De Loecker et al. (2020), while the second case assumes that the variable input in pro-

duction is the cost of goods sold plus selling, general and administrative expenditures, as in

Traina (2018). On top of these two specifications, I consider a third case where both expen-

6In this specification I allow for a higher-order polynomial relative to the main text to accommodate the higher
degree of nonlinearities implied by this production function.
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ditures enter production, but as different inputs. In this case, as opposed to equation (6), the

production function is given by:

Case III: qit = βkkit + βv1v1it + βv2v2it + zit + εit, (23)

where v1it is COGSit and v2it is XSGAit.7 The returns to scale implied by the production tech-

nology in equation (23) is given by α = βk +βv1 +βv2 , which can be estimated following the

methodology outlined in Section I.III.I.8

Robustness 7 — Value-added as output. A long-standing tradition in the literature on pro-

duction function estimation has focused on estimating value-added production functions,

where value-added (sales net of materials) is regressed on capital and labor. Therefore, in

this robustness exercise, I estimate the following specification as an alternative to equation

(6) in Section I.III.I:

log (Qit −Mit) = βkkit + βℓℓit + zit + εit, (24)

where log (Qit −Mit) represents the logarithm of value-added. Since materials are not di-

rectly reported in Compustat but are included within the cost of goods sold alongside labor

costs, an imputation procedure is required. Following common practice in the literature using

Compustat data, I impute material expenditures by first calculating the firm-level wage bill

and then subtracting it from the cost of goods sold.

Robustness results I. Here, we present the implied rise in returns to scale across the seven

robustness exercises outlined above, as shown in Figure IV. Overall, all specifications exhibit

an upward trend in returns to scale, though they differ somewhat in baseline levels depending

on the specific exercise. These results confirm the robustness of the rising trend in returns to

scale observed in the baseline specification.

Robustness results II.Here, we examinewhether the rise in returns to scale has been hetero-

geneous across firms, potentially favoring larger ones. To investigate this, we use estimates

from the translog production function, which yield firm-level returns to scale, and regress

them on time, relative firm size, and their interaction. The interaction term allows us to test

whether the increase in returns to scale disproportionately benefits larger firms.

7In this third specification, I treat only cost of goods sold as variable and use it as an instrument.
8In these specifications I allow for a higher-order polynomial relative to the main text to accommodate the fact
that the variable input used as an instrument is the sum of several expenditures and may require a more flexible
mapping with productivity.
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Figure IV: Returns to Scale over Time
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(a) Cost Shares
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(c) Translog
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(e) COGS + SG&A
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(f) COGS and SG&A
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(g) Value-Added

Note. Figure IV displays the estimated returns to scale from the seven robustness exercises discussed above.
Figure IVa shows estimates using the cost shares approach. Figure IVb reports results from the baseline pro-
duction function augmented with intangible capital. Figure IVc presents estimates from a translog production
function. Figure IVd uses the baseline production function with COGS as the variable input. Figure IVe extends
this by including COGS plus SG&A as variable input. Figure IVf considers COGS and SG&A as separate in-
puts. Finally, Figure IVg shows estimates using value-added as the measure of output. In all figures, light blue
lines with triangles indicate point estimates, and dark blue lines with squares show the 7-year moving averages.
Sector-level estimates are winsorized at the 1% level. Output elasticities are time-varying and calculated with
rolling windows from 1980 to 2014.

Table II presents the results. Overall, we find no clear pattern within the Compustat

sample: most estimates for the interaction between time and relative firm size are small and

statistically insignificant. This suggests that the rise in returns to scale has not systematically

favored larger firms.
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Table II: Translog: Returns to Scale, Trends, and Heterogeneity

Returns to scale
(1) (2) (3) (4)

Time 0.001*** 0.001***
(0.000) (0.000)

Relative size × Time -0.001*** 0.000 -0.001*** -0.000
(0.000) (0.000) (0.000) (0.000)

Relative size -0.048*** -0.041*** -0.045*** 0.041
(0.002) (0.001) (0.002) (0.098)

Fixed effects
Firm ✓ ✓
Year ✓ ✓

Observations 153,665 153,173 153,665 153,173

Note: Table II presents the results regressing returns to scale on time, relative size, and their interaction. Returns
to scale at the firm level are the output of the estimation of the translog production function. Relative size is
measured as the relative size of the firm within a 4-digit NAICS industry by year. Robust standard errors are
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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II Model

In this section, I explain additional details of the model, emphasizing important steps related

to its solution method. Most of the discussion follows the logic developed in Schaal (2017).

In particular, first, I present a complementary and less general contractual environment than

that in the main that allows us to find the allocation implied by the firm problem in the main

text without taking care of the entire distribution of promised utilities within the firm. Then,

I explain how having the allocation at hand, we can recover the prices implied by the main

text contractual environment. Finally, I discuss the efficiency properties of the equilibrium.

II.I Alternative Contractual Environment

The alternative contractual environment discussed in this appendix assumes that contracts

are complete and state-contingent and that there is full commitment on both the customer

and firm side. Relative to the main text, contracts are complete, and customers also have

commitment; this is a very convenient formulation of the contractual environment despite its

lack of realism. Therefore, in this case, the contract specifies {pt+j, τt+j, xt+j, dt+j}∞j=0, where

p is the price, x is the submarket where the customer searches while being matched, τ is a

separation probability, and d is an exit dummy. Each element at time t + j is contingent on

the entire history of shocks (zt+j). The fact that the contract specifies x, i.e., the submarket

in which a firm’s customer must search, is a feature of completeness.

II.II Joint Surplus

The additional assumptions embedded in this alternative contractual environment allow for

the simplification of the problem of the firm presented in the main text. The completeness of

contracts, the commitment assumption, and the transferability of utility guarantee that the

optimal policies always maximize the joint surplus of a firm and its customers. The model

can thus be solved in two stages: a first stage in which I maximize the surplus and a second

stage in which I design the contracts that implement the allocation. The following Bellman
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equation gives the joint surplus maximization problem for a firm and its current customers:

S(z, n) = max
ℓ,d,n′

i,x
′
i,τ,x

′
nu−Wℓ−Wf

+ βE
{
(δ + (1− δ)d)nU ′ + (1− δ)(1− d)

[
τnU ′

+ (1− τ)m(θ(x′))nx′ −
(

Wc

q(θ(x′
i))

+ x′
i

)
n′
i −Wχ1(n

′
i/n)

2nχ2 + S(z′, n′)

]}
,

(25)

subject to:

n′ = (1− τ)(1−m(θ(x′)))n+ n′
i, (26)

y = ezℓα, (27)

y = n. (28)

The first element in the surplus maximization problem is the total utility of the customers

nu followed by the wages Wℓ and operating costs Wf paid by the firm. In the next period,

conditional on surviving the exit shock δ, the firm chooses whether or not to exit, a decision

captured by the exit dummy d. If a firm chooses to exit, all the customers become unmatched

while the firm’s value is set to zero, yielding a total utility of nU ′. If it chooses not to exit,

the firm may then proceed with its separations. The total mass of separations is τn, which

provides a total expected utility of τnU ′ to the customer-firm group. After searching, some

customersmove to other firmswith the value x′ and contribute the amount (1−τ)m(θ(x′))nx′

to the total surplus. Simultaneously, the firm proceeds with its customer acquisitions. For

each new customer acquisition in the product market segment x′
i, the firm incurs a cost of

Wc/q(θ(x′
i)) and must offer on average a lifetime utility-price x′

i to its new customer, which

appears as a cost to the current customer-firm group, and pays, to adjust its customer base,

the convex cost Wχ1(n
′
i/n)

2nχ2 .

The surplus maximization problem characterizes the optimal allocation of all physical re-

sources within a firm: the optimal amount of separations, firm-to-firm transitions, the number

of new customers, and the decision of whether or not to exit. Because the utility is transfer-

able, transfers between the firm and its customers leave the surplus unchanged. Elements of
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the contracts describing the way profits are split, such as prices and continuation utilities,

disappear in the surplus maximization problem. In particular, the distribution of promised

utilities, {C(j)}j∈[0,n], is not part of the state space, and only the size of the customer base at

the production stage n matters. Hence, equations (25)-(28) allow for the characterization of

all physical resources within a firm with standard recursive methods.

II.III Free Entry

Under this different contractual environment, the entering value for a firm stated in equation

(13) in the main text can be restated in terms of the joint surplus maximization problem. I

redefine the problem faced by an entering firm of type z as follows:

Ve(z) = (1− δ)max
xe

[
S(z, ne)− ne

(
xe +

Wc

q(θ(xe))

)]+
. (29)

Having drawn the idiosyncratic productivity z, the potential entrant first decides whether

to exit, a decision captured by the notation {·}+ and summarized in the dummy de. If it stays,

the firm acquires a measure of customers, ne ∈ R+, and chooses a market xe in which to

search, to maximize the joint surplus minus the linear advertisement cost neWc/q(θ(xe))

and the total utility nexe that the firm must deliver to its new customers.

An important feature of this economy is that the submarket in which customers are ac-

quired, xe, solely appears through the term Wc/q(θ(xe)) + xe, which is an acquisition cost

per customer common to both entering and incumbent firms. The fact that the per customer

acquisition cost is the same across firms is what leads to equilibrium block recursivity and

is possible because of the separation of total acquiring costs into a linear and a convex com-

ponent, as explained in the main text. The first term of this common per customer costs,

Wc/q(θ(xe)), captures the linear advertisement cost of acquiring exactly one customer.9 The

second term, xe, is the utility price that firms offer to their new customers. Firms choose

submarkets that minimize the acquisition cost per customer defined as:

ξ = min
x

[
x+

Wc

q(θ(x))

]
. (30)

9If the cost were not linear, this first term would depend on the number of new customers the firm wishes
to acquire, resulting in different firms facing varying per customer acquisition costs, thereby breaking block
recursivity and computational tractability.
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Theoptimal entry further requires that only the submarkets that minimize this acquisition

cost per customer are open in equilibrium, which I summarize in the following complemen-

tarity slackness condition:

∀x, θ(x)

[
x+

Wc

q(θ(x))
− ξ

]
= 0. (31)

This condition means that submarkets either minimize the acquisition cost, ξ = x +

c/q(θ(x)), or remain unvisited, θ(x) = 0. In equilibrium, active submarkets will have the

same acquisition cost, and firms will be indifferent between them. Therefore, the equilibrium

market tightness in every active market is:

θ(x) = q−1

(
Wc

ξ − x

)
. (32)

Notice that because q is a decreasing function, the equilibriummarket tightness decreases

with the level of utility promised to the customers, as these offers succeed in attracting more

customers, while firms refrain from posting such expensive contracts. The probability of find-

ing a firm for customers thus declines with the attractiveness of the offer.

II.IV Prices and the Main Model

Building on the results in Schaal (2017), one can first recover the optimal policies of the firm

problem in the main text by solving the joint surplus maximization problem from equations

(25)-(28) together with equations (29)-(32). Then one can construct the prices presented in

equation (12) in the main text that implement the exact same allocation of physical resources

as the one retrieved from the joint surplus maximization problem using equations (9) and (11)

in the main text.

In conclusion, the contractual environment in the main text and the one in Section II.I

produce the same allocation of physical resources within the firm, making the two allocations

isomorphic. However, the contractual environment in the main text, on top of being more re-

alistic, constrains the set of available contracts pinning down prices uniquely (for an in-depth

discussion of this issue, refer to Schaal, 2017).10 This implies that, even under the contractual

environment specified in the main text, one can solve the model restated in this appendix

10The contractual environment specified in Section II.I leaves prices undetermined.
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through the joint surplus maximization problem with standard recursive methods instead of

solving the firm’s problem stated in the main text, which depends on an infinitely dimensional

object such as the contracts distribution, and only later solve for the optimal pricing strategy

of the firms that sustain the allocation.

II.V Discussion About Equilibrium Efficiency

One of the main implications of the model is that the presence of directed search ensures

efficiency in resource allocation within the market (Schaal, 2017). This means that market

power, as depicted in the framework, operates in an efficient manner. This approach is by

itself valuable because it enables us to gauge the extent to which inefficient explanations can

account for the observed increase in market power. By demonstrating that market power can

arise through efficient mechanisms, the model provides a benchmark against which alterna-

tive explanations can be evaluated.

However, it is important to acknowledge that the model deliberately abstracts from ex-

plicit efficiency considerations. The focus is primarily on search frictions, and as a result,

normative considerations are not explicitly incorporated. Consequently, the analysis in the

paper remains primarily descriptive and positive, providing insights into the workings of mar-

ket power within the specific framework.

Finally, the fact that the model can only explain a fraction of the observed rise in market

power suggests that inefficient explanations are likely to play a significant quantitative role.

This indicates that there are additional factors and mechanisms at play in the dynamics of

market power that are not fully captured by the model. The substantial explanatory power

left for inefficient explanations implies that there may be ample opportunities for policy in-

terventions that extend beyond the scope of this study.
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III Mechanism Validation

III.I Sector-Level Validations

Figure V presents binned scatter plots corresponding to the sector-level regressions of secu-

lar trends on returns to scale, controlling for sector fixed effects. These plots correspond to

columns (2) and (6) in Table III, and columns (2), (6), and (10) in Table IV. Overall, the linear

fit appears to capture the relationship between the various secular trends and returns to scale

reasonably well.

Figure V: Secular Trend Regressions: Binned Scatter Fit
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(e) Selling Costs over Produc-
tion Costs II

Note. Figure V presents binned scatter plots corresponding to the sector-level regressions of secular trends on
returns to scale, controlling for sector fixed effects.

Tables III and IV present the results of regressing various secular trends on returns to scale

at the sector level, allowing for all combinations of sector and time fixed effects. Overall,

the estimated coefficients align with the theoretical predictions in all but one case and are

statistically significant in most specifications.

III.II Firm-Level Validations

Here, we present firm-level validation exercises, where we regress markups and various mea-

sures of selling costs relative to production costs on returns to scale, allowing for all combi-

nations of firm and time fixed effects. Table V reports the full-sample results, while Table VI

presents results for the subsample of firms with positive advertising expenditures.
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Table III: Returns to Scale and Secular Trends I

Entry Rate Reallocation Rate

(1) (2) (3) (4) (5) (6) (7) (8)
Returns to scale -2.02*** -2.89*** -1.39*** -0.21 -1.12*** -1.17*** -0.95*** -0.08

(0.29) (0.34) (0.20) (0.15) (0.23) (0.24) (0.18) (0.13)
Fixed effects

Sector ✓ ✓ ✓ ✓
Time ✓ ✓ ✓ ✓

Observations 592 592 592 592 592 592 592 592

Note: Table III presents regression results where entry and reallocation rates are regressed on returns to scale.
The data source is the BDS and the author’s own estimates. Observations are at the 2-digit NAICS industry by
year level. All variables are expressed in logs, so coefficients can be interpreted as elasticities. Observations are
weighted by relative sector size to reflect aggregate effects. The time period is 1978-2014. Robust standard errors
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15.

Figure VI: Markups and Selling Costs over Production Costs Regressions: Binned
Scatter Fit
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(c) Selling Costs over Produc-
tion Costs II

Note. Figure V presents binned scatter plots corresponding to the firm-level regressions of markups and the
different measures of selling costs over production costs on returns to scale, controlling for firm fixed effects.

Overall, we find that all but one coefficient align with the theoretical prediction: higher

returns to scale are associated with higher markups and higher selling costs relative to pro-

duction costs. In particular, when exploiting all time variation—i.e., when including only firm

fixed effects, which constitutes the most natural test of the theory—the results are all in the

right direction and statistically significant. Figure VI presents the binned scatter fit of the

baseline specification with firm fixed effects only, showing that the linear fit captures the

data reasonably well.

Finally, we test for heterogeneous effects of returns to scale on markups as a function

of firm size. Table VII presents the results. Overall, we consistently find that higher returns

to scale are associated with higher markups—particularly for firms that are larger to begin

with—in line with the prediction of the theory.
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Table IV: Returns to Scale and Secular Trends II

Markups Selling Costs over Production Costs

Advertisement Adjusted SG&A
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Returns to scale 4.45*** 3.15*** 4.28*** 0.81 2.81*** 1.85+ 2.74*** -0.11 8.73*** 8.53*** 7.46*** 1.81**
(0.36) (0.63) (0.38) (0.59) (0.79) (1.25) (0.60) (0.80) (0.62) (1.30) (0.50) (0.92)

Fixed effects
Sector ✓ ✓ ✓ ✓ ✓ ✓
Time ✓ ✓ ✓ ✓ ✓ ✓

Observations 586 586 586 586 591 591 591 591 592 592 592 592

Note: Table IV presents regression results where markups and two alternative measures of selling costs relative
to production costs—based on advertising expenditures and an adjusted measure of SG&A—are regressed on
returns to scale. The data source is Compustat and the author’s own estimates, and observations are averages at
the 2-digit NAICS industry by year level. Observations are weighted by relative sector size to reflect aggregate
effects. The time period is 1978-2014. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05,
* p<0.1, + p<0.15.

Table V: Returns to Scale, Markups, and Selling Costs over Production Costs I

Markups Selling Costs over Production Costs

Advertisement Adjusted SG&A
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Returns to scale 0.96*** 0.29*** 0.84*** 0.18*** 0.18*** 0.03* 0.18*** 0.00 0.20*** 0.07*** 0.11*** -0.01
(0.09) (0.06) (0.09) (0.07) (0.02) (0.02) (0.02) (0.01) (0.04) (0.03) (0.04) (0.03)

Fixed effects
Firm ✓ ✓ ✓ ✓ ✓ ✓
Time ✓ ✓ ✓ ✓ ✓ ✓

Observations 158,850 158,384 158,850 158,384 69,299 68,829 69,299 68,829 158,850 158,384 158,850 158,384

Note: Table V presents regression results where markups and two alternative measures of selling costs relative
to production costs—based on advertising expenditures and an adjusted measure of SG&A—are regressed on
returns to scale. The data source is Compustat and the author’s own estimates. Observations are at the firm-
by-year level and are weighted by relative sector size to reflect aggregate effects. The time period is 1977-2014.
Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15.

Table VI: Returns to Scale, Markups, and Selling Costs over Production Costs II

Markups Selling Costs over Production Costs

Advertisement Adjusted SG&A
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Returns to scale 2.29*** 0.32*** 2.17*** 0.04 0.18*** 0.03* 0.18*** 0.00 0.85*** 0.07+ 0.78*** -0.07+
(0.17) (0.09) (0.17) (0.10) (0.02) (0.02) (0.02) (0.01) (0.08) (0.04) (0.07) (0.05)

Fixed effects
Firm ✓ ✓ ✓ ✓ ✓ ✓
Time ✓ ✓ ✓ ✓ ✓ ✓

Observations 69,299 68,829 69,299 68,829 69,299 68,829 69,299 68,829 69,299 68,829 69,299 68,829

Note: Table VI presents regression results where markups and two alternative measures of selling costs relative
to production costs—based on advertising expenditures and an adjusted measure of SG&A—are regressed on
returns to scale. The data source is Compustat and the author’s own estimates, with the sample restricted to
firm-year observations with non-missing advertising data. Observations are at the firm-by-year level and are
weighted by relative sector size to reflect aggregate effects. The time period is 1977-2014. Robust standard errors
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15.
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Table VII: Returns to Scale and Markups: Heterogeneous Effects

Markups

(1) (2) (3) (4)
Returns to scale 0.62*** 0.30*** 0.29*** 0.11*

(0.04) (0.05) (0.04) (0.06)
Lagged employment -0.32*** -0.09*** -0.35*** -0.09***

(0.02) (0.02) (0.02) (0.02)
Returns to scale × Lagged employment 0.27*** 0.06** 0.29*** 0.05*

(0.02) (0.02) (0.02) (0.02)
Fixed effects

Firm ✓ ✓
Time ✓ ✓

Observations 147,022 146,582 147,022 146,582

Note: Table VII presents regression results where markups, past employment, and their interaction are regressed
on returns to scale. The data source is Compustat and the author’s own estimates. Observations are at the firm-
by-year level and are weighted by relative sector size to reflect aggregate effects. The time period is 1977-2014.
Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1, + p<0.15.
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IV Quantitative Implications

IV.I AdditionalQuantitative Validations

Here, we present additional validation exercises. We begin by examining the joint conditional

correlations of markups and selling costs relative to production costs with respect to firm age

and size. We then turn to validations beyond markups and selling costs, focusing on the

behavior of employment levels and employment growth across firms and over the life cycle.

Table VIII present the regression results from the data and the model of the joint condi-

tional correlations of markups and selling costs relative to production costs with respect to

firm age and size. Although none of these correlations were directly targeted, the model cap-

tures both the qualitative and quantitative patterns of the unconditional correlations between

markups and selling costs relative to production costs with firm age and size, as shown in

the main text. However, its performance is more limited when examining joint conditional

correlations—that is, when jointly regressing markups and selling costs over production costs

on age and size. Formarkups (comparing column (3) with column (6)), themodel replicates the

qualitative pattern but underestimates the magnitude. For selling costs (comparing columns

(9) and (12) with column (15)), the model performs is limited both qualitatively and quantita-

tively, missing the observed empirical relationship along the size dimension. This shortcom-

ing likely arises because, in the model, age conditional on size primarily reflects productivity,

whereas in the data it may capture richer dynamics that lie outside the model’s scope.

Table VIII: Conditional Correlations of Markups and Selling Costs over Production
Costs with Age and Sales

Markups Selling Costs over Production Costs

Data Model Data Model
Advertisement Adjusted SG&A

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Age 0.00 -0.02** 0.01*** -0.22*** -0.19*** -0.12*** -0.13*** -0.03*** -0.62*** -0.98***

(0.00) (0.00) (0.00) (0.00) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)
Sale 0.07*** 0.06*** 0.8*** 0.30*** -0.22*** -0.20*** -0.31*** -0.30*** -0.46*** 0.48***

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.02)
Fixed effects
Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector×Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 47,146 49,293 47,146 50,000 50,000 50,000 22,663 23,555 22,663 41,930 43,728 41,930 50,000 50,000 50,000

Note: Table VIII presents the unconditional and conditional elasticities of markups and selling costs over pro-
duction costs to age and sales. The data are from Compustat (1977–1990), and the model corresponds to the
Compustat-like subsample of the 1980 initial steady state. All variables are in logs. Robust standard errors are
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Themodel aims to capture key cross-sectional patterns in the micro-data beyondmarkups

and selling costs, particularly those related to the firm life cycle. Firms enter the market small

and gradually grow by acquiring customers, resulting in cohort-specific differences in firm

size—young firms tend to have fewer employees, consistent with patterns observed in the BDS

data. In addition, firm survival rates are low, leading to a declining share of older cohorts in

the overall firm population.

Figure VII: Model Cross Section
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Note. Figure VIIa shows the size of each cohort, measured as the number of employees within firms. Figure VIIb
shows the distribution of firms across cohorts. The light blue bars represent BDS data; the dark blue bars show
the model predictions. Data reported are between 1977 and 1985.

 Figure VII visually compares key cross-sectional patterns in themodel and the data. Panel

VIIa shows average firm size by cohort, measured by the number of employees. The model

closely matches the data, accurately capturing life-cycle dynamics. Panel VIIb displays the

distribution of firms across cohorts, which the model replicates well. Overall, the model cap-

tures the core features of the selection dynamics observed in the data.

Empirical studies based on firm-level data have identified several robust patterns in the

life cycle of firms. One key finding is that firm-level growth rates are, on average, positive

but highly dispersed, and that growth tends to decline with firm age—a relationship first es-

tablished by Dunne et al. (1989). This negative correlation between growth and age has been

documented across a wide range of sectors and countries, as shown by Coad (2009). Further-

more, Cabral and Mata (2003), using data on Portuguese manufacturing firms, find that as

cohorts age, the employment distribution shifts to the right and becomes less skewed, reflect-

ing a gradual convergence toward larger firm sizes.
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Figure VIII: Additional Validations
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(c) Distribution by Cohort

Note. VIIIa shows the distribution of employment growth rates calculated as gℓit ≡ (ℓit − ℓit−1)/
1
2 (ℓit + ℓit−1).

Figure VIIIb shows the employment growth rate by age. Figure VIIIc shows the employment distribution across
cohorts.

Figure VIII presents the model-implied behavior corresponding to the empirical patterns

described above. Panel VIIIa shows the distribution of employment growth rates, which are,

on average, positive but highly dispersed—consistent with the data. Panel VIIIb illustrates

that the model accurately replicates life-cycle dynamics, driven by the assumption that firms

enter with a small customer base and grow gradually by acquiring new customers over time.

Thismechanism also explains the patterns shown in Panel VIIIc, where firm size increaseswith

age, leading to a rightward shift in the cohort size distribution. Overall, the model successfully

reproduces several non-targeted features of the firm life cycle.
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IV.II Rising Returns to Scale and the Macroeconomy

IV.II.I Transitional Dynamics

Here, we examine the model’s predictions along the transition dynamics. This exercise re-

quires additional assumptions about firms’ knowledge of the path of returns to scale over

time. To this end, we follow the standard—though admittedly strong—assumption commonly

used in the literature: firms are assumed to know the entire future trajectory of returns to

scale from the outset, which in our case begins in the 1980s.

Figure IX presents the transition dynamics implied by the model. Panels IXa to IXd show

the evolution of the model’s predicted secular trends, while Panel IXe displays the trajectory

of returns to scale used to simulate the transition. The entry rate in the model initially rises in

anticipation of the perfectly foreseen increase in returns to scale, and only subsequently de-

clines, as observed in the data. The reallocation rate tracks the data reasonably well, showing

a steady decline across the whole period. Markups initially fall, as firms—anticipating higher

future returns to scale—lower prices to attract and build customer bases; only after this initial

decline do markups begin to rise, in line with the data. Finally, the ratio of selling costs to

production costs follows a similar inverted U-shape as in the data, despite starting from a dif-

ferent initial level (as these moments are untargeted). Selling costs rise disproportionately at

first, reflecting front-loaded investments in customer acquisition, and then plateau at a higher,

though lower-than-peak, level in the new steady state.

Overall, we find that while most of the secular trends implied by the model align with

the data after 2000, strong anticipation effects generate patterns in entry rates and markups

that deviate from the empirical evidence. This suggests that the rise in returns to scale may

not have been fully anticipated in 1980, but rather gradually discovered by firms over time.

Alternatively, it indicates that other complementary forces—beyond returns to scale—likely

played a role in shaping the secular trends of interest.

IV.II.II Robustness

Here, we present two additional robustness exercises. First, we solve for the counterfactual

steady state using a lower Frisch elasticity. Second, we compute the counterfactual steady

state allowing firms to optimally choose their initial size.

Table IX presents the robustness results. Column 3 reports the outcomes using a Frisch
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Figure IX: Transitional Dynamics
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Note. Figure IX presents the transition dynamics from 1980 onward for the entry rate (Panel IXa), reallocation
rate (Panel IXb), markups (Panel IXc), and selling costs relative to production costs (Panel IXd). Light dashed blue
lines with triangles represent the 3-year moving average from the model, solid blue lines with squares represent
the 3-year moving average from the data, and the dashed black line indicates the model’s final steady state. Panel
IXe displays the evolution of returns to scale in the data, along with the 15-year moving average used as input
for the model.

elasticity of 0.284 instead of the baseline value of 2.84. Overall, we find that the results are

quantitatively similar.
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Table IX:Quantitative Implications of the Rise in Returns to Scale

Baseline Lower Frisch Elasticity Endogenous Initial Size Choice

Markups
Average
cost-weighted markup +15% +14% +15%

Business Dynamism
Entry rate -33% -36% -42%
Reallocation rate -21% -22% -19%

Others
Average selling costs
over production costs +23% +24% +23%

Column 4 shows the results when firms are allowed to choose their initial size optimally.

To implement this, we impose the following free entry condition:

Wκ = max
ne

−γWn2
e +

∫
Ve(z, ne)gz(dz), (33)

where k is recalibrated to match the initial entry rate, and γ is calibrated to match the initial

value of ne. Again, we find that the results remain quantitatively similar.

IV.II.III Additional Results on Firm-Level Patterns Linked to the Secular Trends

Firm Aging. The model explains the aging of U.S. firms, as emphasized by Hopenhayn et al.

(2018), as a consequence of the winners-and-losers mechanism that favors larger—and thus,

on average, older—firms. Specifically, Table X shows that the model predicts an increase in

the share of firms aged 11 years or older by approximately 53%, compared to 50% in the data.

Additionally, the model implies a decline in the employment share of firms aged 5 years or

younger by about 58%, closely matching the 56% decline observed in the data.

Table X: Firm Aging

1980 S.S. 2014 S.S. Model BDS

Firm Aging
Share of old firms 0.322 0.495 +53% +50%
Employment
share of young firms 0.204 0.086 -58% -56%

Note. Columns 1 and 2 report steady-state variables from the model. Columns 2 and 3 report changes in the
model and the data (BDS). Empirical variables come from Hopenhayn et al. (2018). All variables in the model
align with their data definitions.

Evolution ofMarkups Distribution and Reallocation. According to De Loecker et al.
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(2020), the main change in the markup distribution since 1980 is the widening of its right tail,

explaining most of the rise in the aggregate markup. Here, I examine the model’s ability to

replicate this empirical observation.

Figure X: Distributions of Markups over Time: Model vs. Data
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Note. Figure Xa displays the empirical markup distribution for 1977-1990 (light blue) and 2010-2014 (dark blue).
Figure Xb shows the model-implied markup distribution for 1980 (light blue) and 2014 (dark blue).

Figure X compares the markup distributions between the model and the data over time.

In Figure Xa, the empirical markup distribution is shown for the 1980s (light blue) and 2014

(dark blue), while Figure Xb presents the model’s distributions for the same periods. The

model broadly captures the observed change in markup distribution, notably displaying a

wider right tail in the 2014 steady state, consistent with De Loecker et al. (2020).

In line with the literature on superstar firms (e.g., Autor et al., 2020), the model generates

substantial reallocation toward larger firms. This pattern can be seen inspecting the change

over time in the distributions of firms by sales and the cumulative share of total sales ac-

counted for by firms below a given sales level. Figure XI presents these distributions. In both

panels, the cumulative distribution for 2014 lies below that for 1980, indicating fatter right

tails in 2014: there are more large firms, and those large firms account for a larger share of

total sales.

Moreover, panel XIb shows a steeper decline in the cumulative share of sales over time

than panel XIa does for the firm count. This implies not only that there are more large firms

over time, but also that these firms have grown disproportionately larger. This is consistent

with the rise of superstar firms documented by Autor et al. (2020) and Kehrig and Vincent

(2021). Importantly, the model generates this pattern through temporary but persistent pro-
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Figure XI: Cumulative Share of Firms and Sales by Sales: 1980 vs. 2014
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(b) Cumulative Share of Sales

Note: Figure XI presents the cumulative distribution of firms and sales by firm-level sales in the 1980 (blue
line) and 2014 (red line) steady states. Panel XIa shows the cumulative share of firms by sales level—that is,
the percentage of firms with sales below a given threshold. Panel XIb shows the cumulative share of total sales
accounted for by firms with sales below a given level.

ductivity advantages combined with customer accumulation dynamics. Since firms are ex-

ante homogeneous, the resulting large firms are what Kehrig and Vincent (2021) refer to as

”shooting stars”—temporarily dominant firms that gradually revert to the average over time.

Declining Firm-Level Responsiveness. Part of the decline in business dynamism has

been shown by Decker et al. (2020) to result from lower responsiveness of firms, i.e., they

contract or expand less after productivity shocks. This section tests the model’s ability to

capture this micro-level observation.

To investigate this phenomenon in the Compustat data, I use the following regression:

gℓit+1 = α1 + βzitf(t) + θzit + δX ′
it + ϕst + εit. (34)

Here, gℓit+1 denotes the employment growth rate, calculated as 2× (ℓit − ℓit−1)/(ℓit + ℓit−1).

zit represents the empirical total factor productivity residual from the production function

estimation used in the empirical section. f(t) is a function of time, X it is a vector of control

variables, and ϕst denotes sector-time fixed effects. The coefficient of interest, β, measures

the changing effect of productivity on employment growth over time.

In the model, the following modified regression, mirroring equation (34), is estimated
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using a simulated panel for each of the two distinct steady states:

gℓit+1 = αc + θc zit + δcX ′
it + εit, c ∈ {1980, 2014}. (35)

This regression uses the same variables as before but excludes the time-dependent function.11

Similar to equation (34), θ captures the effect of a marginal change in productivity on employ-

ment growth. To assess the decline in responsiveness, I compare the estimated coefficients

between the two steady states, given by β ≡ θ2014 − θ1980.

Table XI: Declining Firm-Level Responsiveness

Model Compustat

Diff. b/w steady states -0.08***
(0.00)

zit × timet -0.05***
(0.00)

zit × It∈[2000,2015) -0.01*
(0.00)

zit × It∈[1990,2000) –0.01***
(0.00)

zit × It∈[2000,2010) -0.01***
(0.00)

zit × It∈[2010,2015) -0.01
(0.01)

Fixed effects
Firm ✓ ✓ ✓
Sector-Time ✓ ✓ ✓

Observations 136,150 136,150 136,150 136,150

Note. The table presents changes in firm-level responsiveness to productivity shocks between 1977 and 2014.
Column (1) reports the change in responsiveness in the model, calculated using the Compustat-like subsample
as the difference in steady-state estimates from equation (35). Columns (2)–(4) show corresponding estimates
from Compustat, based on equation (34), capturing the decline in responsiveness over time. Column (2) includes
a linear trend, while columns (3) and (4) use flexible time dummies. The indicator variable It∈T equals 1 during
the time interval T . For the model, standard errors are computed using a two-sample t-test. Robust standard
errors are reported in parentheses for the data regressions. *** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1.

Table XI summarizes the declining firm-level responsiveness to productivity shocks. The

first column shows the decrease in responsiveness observed between the two steady states of

the model. The last three columns present results from Compustat using different specifica-

tions of the time-dependent function. The first column uses a linear trend capturing respon-

siveness changes over the entire period, the second adds a dummy variable for responsiveness

differences after 2000, and the third includes decade-specific dummy variables, using the first

decade as the reference. The data and the model show a statistically significant decline in
11The time-dependent function is excluded as the regression is conducted separately on the two steady states of
the model, where its contribution to labor growth would be zero by construction.
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firm-level responsiveness across all specifications.

To better understand the underlying forces driving the decline observed in the model, the

concept of firm-level responsiveness is reformulated as:

∂ log ℓit
∂zit

=
1

α
·

[
∂ log yit
∂zit

− 1

]
> 0, (36)

where α represents the returns to scale, and ∂ log yit/∂zit denotes the output growth associ-

ated with productivity growth. Thus, differentiating with respect to α, we get

∂

∂α

∂ log ℓit
∂zit

= − 1

α2
·

[
∂ log yit
∂zit

− 1

]
+

1

α
· ∂

∂α

∂ log yit
∂zit

(37)

= − 1

α2
·

[
∂ log yit
∂zit

− 1

]
+

1

α
· ∂

∂α

[
∂ log yit
∂ log pit

∂ log pit
∂zit

]
, (38)

where ∂ log yit
∂ log pit is the endogenous demand elasticity and ∂ log pit

∂zit
is the endogenous pass-through.

Therefore, it can be seen that if changes in demand elasticity and pass-thorough to changes in

returns to scale are small enough, as it appears from the quantitative analysis, responsiveness

declines with a rise in returns to scale.
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